

Fig. 2. Stereodrawing of the structure. The origin is at the lower right. Hydrogen bonds are dotted.

scheme. Final parameters are given in Table 1. Bond lengths and angles are given in Table 2. The anion H atom and four of the H atoms on the cation are involved in hydrogen bonds. A stereodrawing of the structure is shown in Fig. 2.

Related literature. The anion geometry is virtually identical to that found in the ethylenediammonium salt of NTO (Cromer, Hall, Lee & Ryan, 1988). The cation geometry is close to that found in the 1,2,3-triaminoguanidinium ion (Bracuti, Troup & Extine, 1986) and in the guanidinium ion (Baldwin, Denner, Egan & Markwell, 1986). The H atoms on the central amino group are directed to the lone-pair regions of the terminal amino groups.

NTO is a good, insensitive explosive (Lee & Coburn, 1985) and DAGNTO has about the same impact sensitivity. See Federov & Sheffield (1975) for a description of the impact sensitivity test. It is thought that extensive hydrogen bonding can contribute to impact insensitivity.

See Cromer *et al.* (1988) for further triazole and small explosive molecule references.

References

- BALDWIN, D. A., DENNER, L., EGAN, T. J. & MARKWELL, A. J. (1986). Acta Cryst. C42, 1197–1199.
- BRACUTI, A. J., TROUP, J. M. & EXTINE, M. W. (1986). Acta Cryst. C42, 505-506.
- CROMER, D. T., HALL, J. H., LEE, K.-Y. & RYAN, R. R. (1988). Acta Cryst. C44, 1144-1147.
- FEDEROV, B. T. & SHEFFIELD, O. F. (1975). Encyclopedia of Explosives and Related Items, Vol. 7, p. 137. Picatinny Arsenal, Dover, NJ, USA.
- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- JOHNSON, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- LARSON, A. C. (1969). Crystallographic Computing, edited by F. R. AHMED, pp. 291–296. Copenhagen: Munksgaard.
- LEE, K. Y. & COBURN, M. D. (1985). 3-Nitro-1,2,4-triazol-5-one, A Less Sensitive Explosive. Report LA-10302-MS. Los Alamos National Laboratory, NM, USA.
- YAO JIA-XING (1983). Acta Cryst. A 39, 35-37.

Acta Cryst. (1988). C44, 2208-2211

Structures of Three N-Methylated 4-Hydroxyproline Derivatives

BY GRAHAM P. JONES, BODAPATI P. NAIDU AND LESLIE G. PALEG

Department of Plant Physiology, Waite Agricultural Research Institute, University of Adelaide, Glen Osmond, South Australia 5064, Australia

AND EDWARD R. T. TIEKINK

Jordan Laboratories, Department of Physical and Inorganic Chemistry, University of Adelaide, Adelaide, South Australia 5001, Australia

(Received 25 April 1988; accepted 4 July 1988)

Abstract. (I) $[C_6H_{12}NO_3][C1]$, $M_r = 181.6$, orthorhombic, $P2_12_12_1$, a = 6.099(1), b = 10.651(2), c = 13.692(1) Å, V = 889(2) Å³, Z = 4, $D_m = 1.37(1)$, $D_x = 1.357$ Mg m⁻³, $\lambda = 0.7107$ Å, $\mu = 0.341$ mm⁻¹, F(000) = 384, T = 295(2) K, R = 0.053 for 2027 reflections with $I \ge 2.5(I)$; (II) trans- $[C_7H_{14}NO_3][C1]$, $M_r = 195.6$, orthorhombic, $P2_12_12_1$, a = 6.607(2), b = 11.079(2), c = 12.362(2) Å, V = 905(2) Å³, Z = 4, $D_m = 1.42(1)$, $D_x = 1.436$ Mg m⁻³, $\mu = 0.008, 2701/09/120209, 0.4702, 000$

0.338 mm⁻¹, F(000) = 416, R = 0.035 for 1835 reflections; (III) cis-[C₇H₁₄NO₃][Cl], $M_r = 195.6$, orthorhombic, $P2_12_12_1$, a = 7.031 (2), b = 10.797 (2), c = 12.708 (1) Å, V = 965 (2) Å³, Z = 4, $D_m = 1.34$, $D_x = 1.346$ Mg m⁻³, $\mu = 0.317$ mm⁻¹, F(000) = 416, R = 0.051 for 949 reflections. The crystal structures of (I) N-methyl- and (II) N,N'-dimethyl-4-hydroxy-L-proline and (III) N,N'-dimethyl-4-hydroxy-D-proline have been determined as their hydrochlorides. A trans

0108-2701/88/122208-04\$03.00

\$03.00 © 1988 International Union of Crystallography

Table 1. Crystal data for (I), (II) and (III)

	(I)	(II)	(III)
Crystal size (mm)	$0.16 \times 0.18 \times 0.48$	$0.20 \times 0.40 \times 0.85$	$0.15 \times 0.20 \times 1.00$
θ range for cell dimensions (°)	9–13	4-14	3-17
Reflections measured	3199	2742	1861
θ range (°)	1-27.5	1-27.5	1-25
hkl range	–7→7, –13→1, –17→4	-8→9, -14→1, -16→1	$-1 \rightarrow 9, -1 \rightarrow 14, -16 \rightarrow 11$
Intensity standards	135; 315; 224	140; 025; 034	212; 111; 221
Unique reflections	2027	2085	1638
R _{int}	0.077	0.029	0.039
Reflections used	1675	1835	949
Number of parameters refined	139	147	142
R	0.053	0.035	0.051
wR	0.058	0.037	0.052
k	1.0	1.0	2.5
g	0.0053	0.0041	0.0010
S	0.93	0.73	2-60
$(\Delta/\sigma)_{\rm max}$	0-001	0-001	0.001
$\Delta \rho_{\rm max}$ (e Å ⁻³)	1.10	0-41	0.59
$\Delta \rho_{\min}$ (e Å ⁻³)	-0.45	-0.61	-0.49

Cl(1)O(1)

O(2)

O(3) N(1)

C(2) C(3)

C(4) C(5)

C(6)

C(7)

C(8)

values $(Å^2)$ for (I)

$$B_{\rm eq} = 8\pi^2 (U_{11} + U_{22} + U_{33})/3.$$

	x	У	Z	Beq
Cl(1)	205 (1)	-38 (1)	-4089 (1)	4.32
O(1)	-961 (3)	2819 (3)	-3734 (2)	5.13
O(2)	6330(3)	5823 (2)	-3185 (2)	4.87
O(3)	5576 (4)	4525 (3)	-1935 (2)	5.87
N(I)	2322 (3)	5383 (2)	-4048 (2)	3.55
C(2)	2945 (4)	4681 (3)	-3148 (2)	3.58
C(3)	2926 (5)	3325 (3)	-3496 (3)	4.32
C(4)	978 (5)	3252 (3)	-4192 (2)	3.90
C(5)	560 (4)	4604 (3)	-4509 (2)	4.16
C(6)	5145 (4)	5098 (3)	-2764 (2)	3.95
C(7)	1669 (7)	6723 (4)	-3910 (4)	6.50

disposition of the carboxyl and hydroxyl groups is found in (I) whereas both trans and cis isomers are found in (II) and (III) respectively. The structures adopt an envelope conformation where C(2), C(3), C(4) and C(5) are essentially coplanar with N(1) out of this plane by 0.518 (2), 0.677 (2) and 0.650 (4) Å for (I), (II) and (III) respectively. In (I) the interionic hydrogen bonding is dominated by three close contacts to the chloride anion; O(1)-H(8)···Cl 2·12 (4), O(3)-H(9)···Cl (symmetry operation: 1-x, $\frac{1}{2}+y$, $-\frac{1}{2}-z$) 2·17 (4) and N(1)-H(1)···Cl $(\frac{1}{2}+x, \frac{1}{2}-y, -1-z)$ 2·19 (4) Å. In (II) and (III) only two significant contacts are found in each crystal lattice; (II): O(1)-H(7)...Cl $(-\frac{1}{2}+x, \frac{1}{2}-y, 1-z)$ 2.36 (3) and O(3)-H(8)...Cl $(-\frac{1}{2}+x, -\frac{1}{2}-y, 1-z)$ 2.39 Å, and (III): O(3)-H(8)...Cl $(-1-x, \frac{1}{2}+y, -\frac{1}{2}-z)$ 2.02 (4) and O(1)-H(7)···Cl 2.17 (4) Å.

Experimental. The isolation of (I) and (II) from Melaleuca genus has been reported (Jones, Naidu, Paleg, Tiekink & Snow, 1987). (III) was prepared by base epimerization of (II) (Goodson & Clewer, 1919). Crystals as their hydrochlorides were grown by diffusion of diethyl ether in methanol solutions of the compounds at room temperature. Densities were measured by flotation. Enraf-Nonius CAD-4F diffrac-

Table 2. Fractional atomic coordinates (\times 10⁴) and B_{eq} Table 3. Fractional atomic coordinates (\times 10⁴) and B_{eq} values $(Å^2)$ for (II)

	$B_{\rm eq} = 8\pi^2 (U_{11} + U_{22} + U_{33})/3.$				
	x	У	Z	Bea	
Cl(1)	1622 (1)	876 (1)	4471 (1)	2.82	
O(1)	-3788 (3)	1685 (2)	6788 (2)	3.74	
O(2)	-5467 (3)	-2731 (2)	5681 (1)	3.61	
O(3)	-2662 (3)	-3446 (I)	6462 (2)	3.05	
N(1)	-1673 (2)	-1186(1)	7401 (1)	2.00	
C(2)	-3605 (3)	-1379 (2)	6751 (2)	2.05	
C(3)	-3574 (4)	-333 (2)	5936 (2)	2.84	
C(4)	-2507 (3)	710(2)	6530 (2)	2.58	
C(5)	-1801 (3)	156 (2)	7604 (2)	2.58	
C(6)	-3982 (3)	-2606 (2)	6234 (2)	2.40	
C(7)	244 (3)	-1451 (2)	6782 (2)	2.74	
C(8)	-1688 (3)	-1871 (2)	8450 (2)	2.63	

Table 4. Fractional atomic coordinates (\times 10⁴) and B_{ea} values $(Å^2)$ for (III)

$B_{eq} = 8\pi^2 (U_{11} + U_{22} + U_{23})$	$U_{33})/3.$
--	--------------

x	У	Z	Beg
-2030 (2)	-5555 (2)	515(1)	4.29
-986 (7)	-3427 (5)	-1026 (4)	4.84
3714 (7)	-335 (6)	-3915 (4)	6.66
-6163 (6)	-1554 (5)	-3546 (3)	4.19
-2049 (6)	-728 (4)	-1900 (3)	3.03
-3968 (8)	-1251 (6)	-2203 (5)	2.95
-3882 (11)	-2568 (7)	-1831 (6)	3.71
-2519 (8)	-2579 (6)	-886 (5)	3.16
-1832 (9)	-1273 (6)	-811 (5)	3.47
-4538 (8)	-992 (6)	-3327 (5)	3.37
-2026 (10)	-669 (6)	-1844 (5)	4.40
-437 (9)	-1158 (7)	-2590 (6)	4.69

tometer controlled by a PDP8/A computer, graphitemonochromated Mo Ka radiation; $\omega - 2\theta$ scan technique. Data collection parameters are listed in Table 1. Cell parameters obtained from least-squares procedure (de Boer & Duisenberg, 1984) on 25 reflections. Some Friedel pairs were included in each data set. No decomposition of any crystal occurred during its respective data collection as monitored by three

standards every 3600 s. No corrections were applied for absorption or for extinction. Structures solved by direct methods (Gilmore, 1984) and refinement by full-matrix least squares based on F (Sheldrick, 1976) for reflections with $I \ge 2.5\sigma(I)$. Anisotropic thermal parameters for non-H atoms, and H atoms were located from a difference map and refined except for methyl H atoms which were included in the models at their calculated positions; H atoms were refined with individual isotropic thermal parameters except for the methyl bound H atoms in (III) which had a common thermal parameter. A weighting scheme of the form w =

120H12

H146

Fig. 1. Molecular structure and numbering scheme used for (I) trans- $[C_6H_{12}NO_3][C1]$, (II) trans- $[C_7H_{14}NO_3][C1]$, and (III) cis-[C7H14NO3][Cl] showing 15% probability ellipsoids (Johnson, 1971).

Table 5.	Selected	bond	distances	(Å)	and	bond	angles
			(0)				-

(°)

	(I)	(II)	(III)
N(1)-C(2)	1.491 (4)	1.524 (2)	1.512 (7)
N(1) - C(5)	1.497 (4)	1.510 (2)	1.511 (7)
N(1) - C(7)	1.493 (4)	1.507 (2)	1.510 (8)
N(1)-C(8)	_	1.502 (2)	1.505 (8)
C(2)-C(3)	1.522 (5)	1.535 (3)	1.500 (9)
C(2)-C(6)	1.508 (3)	1.523 (2)	1.509 (9)
C(3)-C(4)	1.525 (4)	1.540 (3)	1.537 (8)
C(4)-O(1)	1.416 (3)	1.409 (2)	1.426 (7)
C(4)-C(5)	1.525 (5)	1.535 (3)	1.493 (9)
C(6)-O(2)	1.204 (4)	1.204 (2)	1.182 (7)
C(6)–O(3)	1.315 (4)	1.306 (3)	1.323 (7)
C(2)-N(1)-C(5)	104.7 (2)	100-3 (1)	100-3 (4)
C(2)-N(1)-C(7)	116-3 (3)	114-1 (1)	113-2 (5)
C(2)-N(1)-C(8)	—	112.3 (1)	114.1 (4)
C(5)-N(1)-C(7)	113-1 (3)	108.8 (2)	110-2 (5)
C(5)-N(1)-C(8)		110.7 (1)	109.7 (5)
C(7)-N(1)-C(8)		110-2 (1)	109.1 (5)
N(1)-C(2)-C(3)	102.4 (2)	103.2 (1)	103.7 (5)
N(1)-C(2)-C(6)	111.6 (2)	118.9 (1)	114-1 (5)
C(3)-C(2)-C(6)	113.3 (2)	113.6 (2)	119.0 (5)
C(2)-C(3)-C(4)	104.5 (3)	105.1 (2)	106-2 (5)
C(3)–C(4)–O(1)	112.9 (3)	114.1 (2)	112.2 (6)
C(3)-C(4)-C(5)	105.1 (2)	104.5 (2)	104.1 (5)
O(1)-C(4)-C(5)	107.1 (2)	107-1 (2)	111-7 (5)
C(4)-C(5)-N(1)	106-5 (2)	105.5 (2)	106-1 (5)
C(2)C(6)O(2)	123.8 (3)	118.3 (2)	125-4 (6)
C(2)-C(6)-O(3)	110.0 (2)	115.9 (2)	110.1 (5)
O(2)-C(6)-O(3)	126-2 (3)	125.8 (2)	124.5 (6)

 $k/[\sigma^2(F) + g | F |^2]$ was introduced for each refinement. Scattering factors for all atoms given in SHELX76 (Sheldrick, 1976). All calculations on laboratory MicroVAX I computer system. Atomic parameters given in Tables 2-4, selected bond distances and angles in Table 5,* and the numbering schemes used are shown in Fig. 1.

Related literature. The title compounds have been characterized as part of a wider study of the occurrence and physiological roles of proline analogues which accumulate in plants as a result of environmental stress (Naidu, Jones, Paleg & Poljakoff-Mayber, 1987; Jones, Naidu, Paleg, Tiekink & Snow, 1987; Jones, Naidu, Paleg & Tiekink, 1988).

* Lists of structure factors, thermal parameters, H-atom parameters and mean-plane data have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 51217 (26 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England,

References

- BOER, J. L. DE & DUISENBERG, A. J. M. (1984). Enraf-Nonius CAD-4F diffractometer software update. February 1984. Groningen and Utrecht, The Netherlands.
- GILMORE, C. J. (1984). J. Appl. Cryst. 17, 42-46.
- GOODSON, J. A. & CLEWER, H. W. B. (1919). J. Chem. Soc. pp. 923-933.
- JOHNSON, C. K. (1971). ORTEPII. Report ORNL-3794, Oak Ridge National Laboratory, Tennessee, USA.

JONES, G. P., NAIDU, B. P., PALEG, L. G. & TIEKINK, E. R. T. (1988). Acta Cryst. C44, 1669-1671.

JONES, G. P., NAIDU, B. P., PALEG, L. G., TIEKINK, E. R. T. & SNOW, M. R. (1987). Phytochemistry, 26, 3343-3344.

- NAIDU, B. P., JONES, G. P., PALEG, L. G. & POLJAKOFF-MAYBER, A. (1987). Aust. J. Plant Physiol. 14. 669-677.
- SHELDRICK, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.

Acta Cryst. (1988). C44, 2211-2212

Crystal Studies of Heterocyclic Compounds Containing One Oxygen and Two Nitrogen Atoms. IX. 2,7,8,9,10,15-Hexahydro-N,N'-ditosyldibenzo[c,i][1,5,8]oxadiazacycloundecene

By A. Stepień

Department of Crystallography, Institute of Chemistry, University of Łódź, Nowotki 18, 91-416 Łódź, Poland

(Received 9 December 1987; accepted 20 June 1988)

Abstract. $C_{30}H_{30}N_2O_5S_2$, $M_r = 562.7$, monoclinic, A2/a, a=9.607(1), b=13.368(2), c=21.293(3)Å, $\beta = 91.21 (1)^{\circ}, \quad V = 2734.0 (6) \text{ Å}^3, \quad Z = 4, \quad D_x = 100 \text{ Å}^3$ $1.3669 (3) \text{ g cm}^{-3}$, $\lambda(\text{Cu } K\alpha) = 1.54178 \text{ Å}$, $\mu =$ 20.06 cm^{-1} , F(000) = 1184, room temperature, R =0.050 for 2010 reflections with $I > 3\sigma(I)$. The molecule lies in a special position: the twofold axis runs through the O atom. The eleven-membered ring is in a quasi-chair conformation. The fused aromatic rings form a dihedral angle of $13.9(3)^{\circ}$ and the benzene rings of the tosyl groups form a dihedral angle of $15.2 (4)^{\circ}$. The sum of the angles at N is $351.8 (2)^{\circ}$.

Experimental. Light yellow prismatic crystals from ethanol, room temperature: crystal size $0.2 \times 0.2 \times$

Table 1. Final fractional coordinates $(\times 10^4)$ and equivalent isotropic temperature factors $(\times 10^4)$ with e.s.d.'s in parentheses

For non-H atoms	$U_{eq} = $	$\frac{1}{3}(U_{11}+U_{11}$	$U_{22} + U_{33}$	$U_{13}\cos\beta$).
-----------------	-------------	--	-------------------	----------------------

x	У	Z	$U_{eq}(Å^2)$
2500	9316 (2)	0	590 (22)
2560 (4)	8703 (3)	550 (2)	539 (22)
4164 (4)	7191 (2)	707 (1)	445 (18)
3965 (4)	8223 (2)	636 (2)	482 (20)
5156 (5)	8820 (3)	618 (2)	606 (24)
6467 (5)	8435 (3)	682 (2)	672 (27)
6651 (5)	7416 (3)	769 (2)	651 (27)
5498 (4)	6800 (3)	788 (2)	538 (22)
2988 (3)	6521 (2)	678 (1)	445 (15)
3080 (4)	5649 (2)	248 (2)	450 (20)
2090 (1)	6352 (1)	1322 (0)	479 (04)
930 (2)	5733 (2)	1136 (1)	597 (15)
1842 (3)	7324 (2)	1578 (1)	634 (17)
3141 (4)	5690 (2)	1867 (1)	467 (19)
3000 (4)	4664 (3)	1925 (2)	531 (22)
3824 (4)	4159 (3)	2362 (2)	588 (24)
4793 (4)	4656 (3)	2733 (2)	564 (22)
4904 (5)	5692 (3)	2668 (2)	631 (25)
4089 (4)	6203 (3)	2239 (2)	583 (24)
5711 (6)	4099 (5)	3193 (2)	759 (32)
	x 2500 2560 (4) 4164 (4) 3965 (4) 5156 (5) 66651 (5) 66651 (5) 5498 (4) 2988 (3) 3080 (4) 2090 (1) 930 (2) 1842 (3) 3141 (4) 3000 (4) 3824 (4) 4793 (4) 4793 (4) 4904 (5) 4089 (4) 5711 (6)	$\begin{array}{c cccc} x & y \\ 2500 & 9316 (2) \\ 2560 (4) & 8703 (3) \\ 4164 (4) & 7191 (2) \\ 3965 (4) & 8223 (2) \\ 5156 (5) & 8420 (3) \\ 6467 (5) & 8435 (3) \\ 6651 (5) & 7416 (3) \\ 5498 (4) & 6800 (3) \\ 2988 (3) & 6521 (2) \\ 3080 (4) & 5649 (2) \\ 2090 (1) & 6352 (1) \\ 930 (2) & 5733 (2) \\ 1842 (3) & 7324 (2) \\ 3141 (4) & 5690 (2) \\ 3000 (4) & 4664 (3) \\ 3824 (4) & 4159 (3) \\ 4793 (4) & 4656 (3) \\ 4904 (5) & 5692 (3) \\ 4089 (4) & 6203 (3) \\ 5711 (6) & 4099 (5) \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

0.3 mm. CAD-4 diffractometer using θ -2 θ scan technique; unit-cell parameters from 25 reflections in the θ range $8.5-40.7^{\circ}$; graphite-monochromatized Cu Ka radiation, range of h, k and l 0 to 11, 0 to 15, -26 to 26 respectively; total of 2412 independent reflections measured to $(\sin\theta)/\lambda = 0.63 \text{ Å}^{-1}$, data not corrected for absorption, $R_{int} = 0.0521$; standard reflection 355, maximum change 2.1%; 2010 reflections with $I > 3\sigma(I)$ used in calculations; solution by direct methods using SHELX76 (Sheldrick, 1976), all H atoms located from a difference map, refinement by full-matrix leastsquares procedure on F magnitudes (237 parameters)

Table 2. Bond lengths (Å) and angles (°)

O3-C1	1.430 (4)	N1-C11	1.443 (4)
C1-C12	1 502 (5)	N1C2	1.485 (4)
C11-C12	1.400 (4)	C21–C22	1.384 (5)
C12-C13	1.396 (5)	C22–C23	1.384 (5)
C13-C14	1.365 (6)	C23–C24	1-379 (5)
C14-C15	1.385 (6)	C24-C25	1.396 (5)
C15-C16	1.381 (5)	C25-C26	1.372 (5)
C11-C16	1.391 (5)	C21-C26	1.377 (5)
C2–C2 ¹	1.520 (7)	C24–C241	1.502 (6)
\$1-N1	1.649 (3)	Si-C21	1.761 (3)
\$1–O1	1.437 (2)	S1-O2	1.432 (2)
	110.0 (4)	03-01-012	111.4 (3)
	122.6(3)	C1 - C12 - C13	110.2 (3)
$C_{11} C_{12} C_{13}$	123.0(3) 117.1(3)	$C1^{}$	122.5 (4)
C13 C14 C15	110.0(4)	C12 = C13 = C14 C14 = C15 = C16	110.3 (4)
C13 = C14 = C15	120.6 (4)	C12_C11_C16	120.4 (3)
	120.0 (4)	NI_CII_CI6	110.4 (3)
C_{2} N1-C11	120.2(3) 117.1(3)	$N1 - C2 - C2^{1}$	112.1 (3)
C2_N1_S1	116.4(2)	C11_N1_S1	118.2 (2)
NI SI C21	108.3(1)	$C_{21} = S_{1} = 0_{1}$	108.8 (2)
N1 = S1 = C21 N1 = S1 = O1	105.5(1)	$C_{21} = S_{1} = O_{1}$	107.6 (2)
N1-S1-01	105.5(1) 106.7(1)	01 - 81 - 02	119.6 (2)
S1_C21_C22	120.1 (3)	S1_C21_C26	119.5 (3)
$C_{1} = C_{2} = C_{2}$	120-1 (3)	$C_{21} - C_{22} - C_{23}$	119.2 (4)
$C_{20} = C_{21} = C_{22}$	121.3 (4)	C_{23} C_{24} C_{25}	118.2 (4)
C22 = C23 = C24	$121 \cdot 3(4)$ $121 \cdot 1(4)$	$C_{23} = C_{24} = C_{25}$	119.7 (4)
$C_{241} - C_{23} - C_{20}$	121.0(4)	$C_{241} = C_{20} = C_{23}$	120.7 (4

Symmetry code: (i) $\frac{1}{2} - x$, y, -z.